Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Exp Eye Res ; 173: 160-178, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29753728

RESUMO

It has been shown that mammalian retinal glial (Müller) cells act as living optical fibers that guide the light through the retinal tissue to the photoreceptor cells (Agte et al., 2011; Franze et al., 2007). However, for nonmammalian species it is unclear whether Müller cells also improve the transretinal light transmission. Furthermore, for nonmammalian species there is a lack of ultrastructural data of the retinal cells, which, in general, delivers fundamental information of the retinal function, i.e. the vision of the species. A detailed study of the cellular ultrastructure provides a basic approach of the research. Thus, the aim of the present study was to investigate the retina of the spectacled caimans at electron and light microscopical levels to describe the structural features. For electron microscopy, we used a superfast microwave fixation procedure in order to achieve more precise ultrastructural information than common fixation techniques. As result, our detailed ultrastructural study of all retinal parts shows structural features which strongly indicate that the caiman retina is adapted to dim light and night vision. Various structural characteristics of Müller cells suppose that the Müller cell may increase the light intensity along the path of light through the neuroretina and, thus, increase the sensitivity of the scotopic vision of spectacled caimans. Müller cells traverse the whole thickness of the neuroretina and thus may guide the light from the inner retinal surface to the photoreceptor cell perikarya and the Müller cell microvilli between the photoreceptor segments. Thick Müller cell trunks/processes traverse the layers which contain light-scattering structures, i.e., nerve fibers and synapses. Large Müller cell somata run through the inner nuclear layer and contain flattened, elongated Müller cell nuclei which are arranged along the light path and, thus, may reduce the loss of the light intensity along the retinal light path. The oblique arrangement of many Müller cell trunks/processes in the inner plexiform layer and the large Müller cell somata in the inner nuclear layer may suggest that light guidance through Müller cells increases the visual sensitivity. Furthermore, an adaptation of the caiman retina to low light levels is strongly supported by detailed ultrastructural data of other retinal parts, e.g. by (i) the presence of a guanine-based retinal tapetum, (ii) the rod dominance of the retina, (iii) the presence of photoreceptor cell nuclei, which penetrate the outer limiting membrane, (iv) the relatively low densities of photoreceptor and neuronal cells which is compensated by (v) the presence of rods with long and thick outer segments, that may increase the probability of photon absorption. According to a cell number analysis, the central and temporal areas of the dorsal tapetal retina, which supports downward prey detection in darker water, are the sites of the highest diurnal contrast/color vision, i.e. cone vision and of the highest retinal light sensitivity, i.e. rod vision.


Assuntos
Adaptação Ocular/fisiologia , Jacarés e Crocodilos , Visão Noturna/fisiologia , Retina/ultraestrutura , Animais , Contagem de Células , Feminino , Masculino , Microscopia Eletrônica , Células Fotorreceptoras de Vertebrados/ultraestrutura , Retina/fisiologia , Epitélio Pigmentado da Retina/ultraestrutura
2.
Exp Eye Res ; 173: 91-108, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29763583

RESUMO

In this study, we show the capability of Müller glial cells to transport light through the inverted retina of reptiles, specifically the retina of the spectacled caimans. Thus, confirming that Müller cells of lower vertebrates also improve retinal light transmission. Confocal imaging of freshly isolated retinal wholemounts, that preserved the refractive index landscape of the tissue, indicated that the retina of the spectacled caiman is adapted for vision under dim light conditions. For light transmission experiments, we used a setup with two axially aligned objectives imaging the retina from both sides to project the light onto the inner (vitreal) surface and to detect the transmitted light behind the retina at the receptor layer. Simultaneously, a confocal microscope obtained images of the Müller cells embedded within the vital tissue. Projections of light onto several representative Müller cell trunks within the inner plexiform layer, i.e. (i) trunks with a straight orientation, (ii) trunks which are formed by the inner processes and (iii) trunks which get split into inner processes, were associated with increases in the intensity of the transmitted light. Projections of light onto the periphery of the Müller cell endfeet resulted in a lower intensity of transmitted light. In this way, retinal glial (Müller) cells support dim light vision by improving the signal-to-noise ratio which increases the sensitivity to light. The field of illuminated photoreceptors mainly include rods reflecting the rod dominance of the of tissue. A subpopulation of Müller cells with downstreaming cone cells led to a high-intensity illumination of the cones, while the surrounding rods were illuminated by light of lower intensity. Therefore, Müller cells that lie in front of cones may adapt the intensity of the transmitted light to the different sensitivities of cones and rods, presumably allowing a simultaneous vision with both receptor types under dim light conditions.


Assuntos
Jacarés e Crocodilos/fisiologia , Células Ependimogliais/fisiologia , Luz , Visão Noturna/fisiologia , Retina/fisiologia , Visão Ocular/fisiologia , Animais , Proteínas do Olho/metabolismo , Feminino , Masculino , Microscopia Confocal , Células Fotorreceptoras Retinianas Cones/fisiologia , Células Fotorreceptoras Retinianas Bastonetes/fisiologia
3.
Glia ; 65(1): 62-74, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27706854

RESUMO

Tractional forces or mechanical stimulation are known to induce calcium responses in retinal glial cells. The aim of the study was to determine the characteristics of calcium responses in Müller glial cells of the avascular guinea pig retina induced by focal mechanical stimulation. Freshly isolated retinal wholemounts were loaded with Mitotracker Deep Red (to fill Müller cells) and the calcium-sensitive dye Fluo-4/AM. The inner retinal surface was mechanically stimulated with a micropipette tip for 10 ms. Stimulation induced two different cytosolic calcium responses in Müller cells with different kinetics in dependence on the distance from the stimulation site. Müller cells near the stimulation site displayed an immediate and long-lasting calcium response with high amplitude. This response was mediated by calcium influx from the extracellular space likely triggered by activation of ATP-insensitive P2 receptors. More distant Müller cells displayed, with a delay of 2.4 s, transient calcium responses which propagated laterally in a wave-like fashion. Propagating calcium waves were induced by a calcium-independent release of ATP from Müller cells near the stimulation site, and were mediated by a release of calcium from internal stores triggered by ATP, acting in part at P2Y1 receptors. The data suggest that mechanically stimulated Müller cells of the guinea pig retina release ATP which induces a propagating calcium wave in surrounding Müller cells. Propagating calcium waves may be implicated in the spatial regulation of the neuronal activity and homeostatic glial functions, and may transmit gliosis-inducing signals across the retina. Mechanical stimulation of guinea pig Müller cells induces two calcium responses: an immediate response around the stimulation site and propagating calcium waves. Both responses are differentially mediated by activation of purinergic receptors. GLIA 2016 GLIA 2017;65:62-74.


Assuntos
Sinalização do Cálcio/fisiologia , Cálcio/metabolismo , Neuroglia/metabolismo , Retina/citologia , Retina/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Gliose/metabolismo , Cobaias , Camundongos , Receptores Purinérgicos/metabolismo
4.
PLoS One ; 9(5): e97155, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24831221

RESUMO

BACKGROUND: Müller cells, the principal glial cells of the vertebrate retina, are fundamental for the maintenance and function of neuronal cells. In most vertebrates, including humans, Müller cells abundantly express Kir4.1 inwardly rectifying potassium channels responsible for hyperpolarized membrane potential and for various vital functions such as potassium buffering and glutamate clearance; inter-species differences in Kir4.1 expression were, however, observed. Localization and function of potassium channels in Müller cells from the retina of crocodiles remain, hitherto, unknown. METHODS: We studied retinae of the Spectacled caiman (Caiman crocodilus fuscus), endowed with both diurnal and nocturnal vision, by (i) immunohistochemistry, (ii) whole-cell voltage-clamp, and (iii) fluorescent dye tracing to investigate K+ channel distribution and glia-to-neuron communications. RESULTS: Immunohistochemistry revealed that caiman Müller cells, similarly to other vertebrates, express vimentin, GFAP, S100ß, and glutamine synthetase. In contrast, Kir4.1 channel protein was not found in Müller cells but was localized in photoreceptor cells. Instead, 2P-domain TASK-1 channels were expressed in Müller cells. Electrophysiological properties of enzymatically dissociated Müller cells without photoreceptors and isolated Müller cells with adhering photoreceptors were significantly different. This suggests ion coupling between Müller cells and photoreceptors in the caiman retina. Sulforhodamine-B injected into cones permeated to adhering Müller cells thus revealing a uni-directional dye coupling. CONCLUSION: Our data indicate that caiman Müller glial cells are unique among vertebrates studied so far by predominantly expressing TASK-1 rather than Kir4.1 K+ channels and by bi-directional ion and uni-directional dye coupling to photoreceptor cells. This coupling may play an important role in specific glia-neuron signaling pathways and in a new type of K+ buffering.


Assuntos
Células Ependimogliais/citologia , Células Fotorreceptoras de Vertebrados/citologia , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Retina/fisiologia , Jacarés e Crocodilos/metabolismo , Animais , Corantes Fluorescentes/química , Glutamatos/metabolismo , Ativação do Canal Iônico , Potenciais da Membrana , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Potássio/química , Canais de Potássio de Domínios Poros em Tandem/metabolismo , Estrutura Terciária de Proteína , Retina/metabolismo , Transdução de Sinais
5.
Biophys J ; 101(11): 2611-9, 2011 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-22261048

RESUMO

In vertebrate eyes, images are projected onto an inverted retina where light passes all retinal layers on its way to the photoreceptor cells. Light scattering within this tissue should impair vision. We show that radial glial (Müller) cells in the living retina minimize intraretinal light scatter and conserve the diameter of a beam that hits a single Müller cell endfoot. Thus, light arrives at individual photoreceptors with high intensity. This leads to an optimized signal/noise ratio, which increases visual sensitivity and contrast. Moreover, we show that the ratio between Müller cells and cones-responsible for acute vision-is roughly 1. This suggests that high spatiotemporal resolution may be achieved by each cone receiving its part of the image via its individual Müller cell-light guide.


Assuntos
Transdução de Sinal Luminoso/efeitos da radiação , Neuroglia/citologia , Neuroglia/efeitos da radiação , Retina/citologia , Retina/efeitos da radiação , Animais , Cobaias , Imageamento Tridimensional , Imuno-Histoquímica , Técnicas In Vitro , Neuroglia/metabolismo , Retina/metabolismo , Células Fotorreceptoras Retinianas Cones/citologia , Células Fotorreceptoras Retinianas Cones/metabolismo , Células Fotorreceptoras Retinianas Cones/efeitos da radiação , Espalhamento de Radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...